// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H #define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H namespace Eigen { /** \class TensorKChippingReshaping * \ingroup CXX11_Tensor_Module * * \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor. * * */ namespace internal { template<DenseIndex DimId, typename XprType> struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType> { typedef typename XprType::Scalar Scalar; typedef traits<XprType> XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference<Nested>::type _Nested; static const int NumDimensions = XprTraits::NumDimensions - 1; static const int Layout = XprTraits::Layout; }; template<DenseIndex DimId, typename XprType> struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense> { typedef const TensorChippingOp<DimId, XprType>& type; }; template<DenseIndex DimId, typename XprType> struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type> { typedef TensorChippingOp<DimId, XprType> type; }; template <DenseIndex DimId> struct DimensionId { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) { eigen_assert(dim == DimId); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return DimId; } }; template <> struct DimensionId<Dynamic> { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) { eigen_assert(dim >= 0); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return actual_dim; } private: const DenseIndex actual_dim; }; } // end namespace internal template<DenseIndex DimId, typename XprType> class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> > { public: typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar; typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested; typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind; typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim) : m_xpr(expr), m_offset(offset), m_dim(dim) { } EIGEN_DEVICE_FUNC const Index offset() const { return m_offset; } EIGEN_DEVICE_FUNC const Index dim() const { return m_dim.actualDim(); } EIGEN_DEVICE_FUNC const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp& operator = (const TensorChippingOp& other) { typedef TensorAssignOp<TensorChippingOp, const TensorChippingOp> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign; Assign assign(*this, other); internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const Index m_offset; const internal::DimensionId<DimId> m_dim; }; // Eval as rvalue template<DenseIndex DimId, typename ArgType, typename Device> struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> { typedef TensorChippingOp<DimId, ArgType> XprType; static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; static const int NumDims = NumInputDims-1; typedef typename XprType::Index Index; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { // Alignment can't be guaranteed at compile time since it depends on the // slice offsets. IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, Layout = TensorEvaluator<ArgType, Device>::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device) { EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE); eigen_assert(NumInputDims > m_dim.actualDim()); const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); eigen_assert(op.offset() < input_dims[m_dim.actualDim()]); int j = 0; for (int i = 0; i < NumInputDims; ++i) { if (i != m_dim.actualDim()) { m_dimensions[j] = input_dims[i]; ++j; } } m_stride = 1; m_inputStride = 1; if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { for (int i = 0; i < m_dim.actualDim(); ++i) { m_stride *= input_dims[i]; m_inputStride *= input_dims[i]; } } else { for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) { m_stride *= input_dims[i]; m_inputStride *= input_dims[i]; } } m_inputStride *= input_dims[m_dim.actualDim()]; m_inputOffset = m_stride * op.offset(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(m_stride == 1); Index inputIndex = index * m_inputStride + m_inputOffset; EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = m_impl.coeff(inputIndex); inputIndex += m_inputStride; } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) { // m_stride is aways greater than index, so let's avoid the integer division. eigen_assert(m_stride > index); return m_impl.template packet<LoadMode>(index + m_inputOffset); } else { const Index idx = index / m_stride; const Index rem = index - idx * m_stride; if (rem + PacketSize <= m_stride) { Index inputIndex = idx * m_inputStride + m_inputOffset + rem; return m_impl.template packet<LoadMode>(inputIndex); } else { // Cross the stride boundary. Fallback to slow path. EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index); ++index; } PacketReturnType rslt = internal::pload<PacketReturnType>(values); return rslt; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { double cost = 0; if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims - 1)) { cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>(); } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) { cost += TensorOpCost::AddCost<Index>(); } else { cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() + 3 * TensorOpCost::AddCost<Index>(); } return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { CoeffReturnType* result = const_cast<CoeffReturnType*>(m_impl.data()); if (((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumDims) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) && result) { return result + m_inputOffset; } else { return NULL; } } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex; if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(m_stride == 1); inputIndex = index * m_inputStride + m_inputOffset; } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims-1) || (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) { // m_stride is aways greater than index, so let's avoid the integer division. eigen_assert(m_stride > index); inputIndex = index + m_inputOffset; } else { const Index idx = index / m_stride; inputIndex = idx * m_inputStride + m_inputOffset; index -= idx * m_stride; inputIndex += index; } return inputIndex; } Dimensions m_dimensions; Index m_stride; Index m_inputOffset; Index m_inputStride; TensorEvaluator<ArgType, Device> m_impl; const internal::DimensionId<DimId> m_dim; const Device& m_device; }; // Eval as lvalue template<DenseIndex DimId, typename ArgType, typename Device> struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device> : public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> { typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base; typedef TensorChippingOp<DimId, ArgType> XprType; static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; static const int NumDims = NumInputDims-1; typedef typename XprType::Index Index; typedef DSizes<Index, NumDims> Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; enum { IsAligned = false, PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == 0) || (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(this->m_stride == 1); EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; internal::pstore<CoeffReturnType, PacketReturnType>(values, x); Index inputIndex = index * this->m_inputStride + this->m_inputOffset; for (int i = 0; i < PacketSize; ++i) { this->m_impl.coeffRef(inputIndex) = values[i]; inputIndex += this->m_inputStride; } } else if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == NumInputDims-1) || (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == 0)) { // m_stride is aways greater than index, so let's avoid the integer division. eigen_assert(this->m_stride > index); this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x); } else { const Index idx = index / this->m_stride; const Index rem = index - idx * this->m_stride; if (rem + PacketSize <= this->m_stride) { const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem; this->m_impl.template writePacket<StoreMode>(inputIndex, x); } else { // Cross stride boundary. Fallback to slow path. EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; internal::pstore<CoeffReturnType, PacketReturnType>(values, x); for (int i = 0; i < PacketSize; ++i) { this->coeffRef(index) = values[i]; ++index; } } } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H